Best possible global bounds for Jensen functional

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for the Normalised Jensen Functional

New inequalities for the general case of convex functions defined on linear spaces which improve the famous Jensen’s inequality are established. Particular instances in the case of normed spaces and for complex and real n-tuples are given. Refinements of Shannon’s inequality and the positivity of Kullback-Leibler divergence are obtained.

متن کامل

Bounds for the Normalized Jensen – Mercer Functional

We introduce the normalized Jensen-Mercer functional Mn( f ,x, p) = f (a)+ f (b)− n ∑ i=1 pi f (xi)− f ( a+b− n ∑ i=1 pixi ) and establish the inequalities of type MMn( f ,x,q) Mn( f ,x, p) mMn( f ,x,q) , where f is a convex function, x = (x1, . . . ,xn) and m and M are real numbers satisfying certain conditions. We prove them for the case when p and q are nonnegative n -tuples and when p and q...

متن کامل

Refinements of the Lower Bounds of the Jensen Functional

and Applied Analysis 3 where Pj j ∑ i 1 pi, j 1, . . . , n. 1.7 Lemma 1.6. Let f be a convex function on I, p a positive n-tuple such that Pn ∑n i 1 pi 1 and x1, x2, . . . , xn ∈ I, n ≥ 3 such that x1 ≤ x2 ≤ · · · ≤ xn. For fixed x1, x2, . . . , xk, where k 2, 3, . . . , n− 1, the Jensen functional J x,p, f defined in 1.2 is minimal when xk xk 1 · · · xn−1 xn, that is, J ( x,p, f ) ≥ k−1 ∑ i 1 ...

متن کامل

Best possible lower bounds on the coefficients of Ehrhart polynomials

For an integral convex polytope P ⊂ R, we recall i(P, n) = |nP∩Z|the Ehrhart polynomial of P. Let for r = 0, . . . , d,gr(P) be the r-th coefficients ofi(P, n). Martin Henk and Makoto Tagami gave the lower bounds on the coefficientsgr(P) in terms of the volume of P. In general, these bounds are not best possible.However, it is known that in the cases r ∈ {1, 2, d − 2}, these...

متن کامل

Asymptotic behavior of alternative Jensen and Jensen type functional equations

In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear mappings. In 1951 D.G. Bourgin was the second author to treat the Ulam problem for additive mappings. In 1982–2005 we established the Hyers–Ulam stability for the Ulam problem of linear and nonlinear mappings. In 1998 S.-M. Jung and in 2002–2005 the authors of this paper investigated the Hyers–Ulam stability of additive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2010

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-10-10353-0